APPLICABILITY CRITERIA FOR KINEMATIC AND DIFFUSION ROUTING MODELS

INTRODUCTION

Many simplified flood routing models may be categorized as either
kinematic—type or diffusion-type models. The Muskingum Model (McCarthy,
1938), Reservoir Routing Model (Goodrich, 1931), SSARR Model (Rockwood, 1958),
Kinematic Model (lLighthill and Whitham, 1955), and the SWMM Model (Buber
et al., 1975) are kinematic-type models. The Muskingum—Cunge Model (Cunge,
1969) is a diffusion-type model. These models are limited to applicatious
where the inertial effects are insignificant and, in the case of the
kinematic-type models, the water surface slope is constant with time and is
closely approximated by the channel bottom slope.

This paper develops criteria to quantify the acceptable range of applica-
tion for kinematic and diffusion models. The criteria are developed by esti-
mating the magnitude of the terms in the conservation of momentum equation
which are neglected by the kinematic and diffusion models. The omitted terms
are normalized with the channel hottom slope; this ratio is expressed with
hydraulic variables (channel bottom slope, peak discharge, Manning n, time of
rise of inflow hydrograph, cross-section parameters) whose values are readily
available prior to routing. The criteria are applicable for a wide range of
practical channel shapes and typical inflow hydrograph shapes.

Ponce et al. (1978) also presented criteria for selecting appropriate
applications for kinematic and diffusion models. Their results, which were
obtained for a sinusoidal shaped wave in a wide channel by using a linear
analysis technique, are compared with those developed herein. Realistic
hydrograph shape, cross-section shape, nonlinearity and non—prismatic channel
characteristics are considered in the approach presented in this paper.

Kinematic and diffusion models are also limited to applications where
insignificant backwater effects exist and where wave propagation is in the
downstream flow direction only. No attempt is made herein to quantify these
restrictions.

All notation is defined in Appendix A--Notation.

THEORETICAL DEVELOPMENT

The conservation of momentum of one-dimensional unsteady flow is
described by the following:

3V/3t + V 3V/3ax + g(3y/3x - so +5) =0 (1)
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Solving Eq. (1) for the friction slope (S) and then dividing through by the
channel bottom slope (S,), one obtains:

(1 (2 &)
S 3v/3x VIV/ax 3V/3e
—- ] - - - (2)
S° So 4 S° -4 S°

The couservation of mass of one—-dimensional unsteady flow is described by
the following:

A3V/3x + V 3A/3x + B 3y/ic = 0 v (3)
Also, the term (3A/3x) may be approximatad as:
3A/3x = B 3y/3x + y 3B/3x (4)
and the hydraulic depth (D) is by definitionm,
D = A/B (5)
Now, solving Eq. (3) for 3V/3x, the following 1s obtained:
aV/ix = -V/A 3A/3x - B/A 3y/3¢ é6)

Upon substituting Eqs. (4) and (5) into Eq. (6) and then mltiplying through
by V, the following expression for the tarm (V dv/ix) Ls obtained:

V 3V/3x = -v2/D 3y/ax - V2/B 3B/3x - V/D 3y/3¢t (7
Using the kinematic approximatiom for 3y/3x (Hendersom, 1966), i.e.,
3y/3x = -1/c 3y/3¢ (8)

where ¢ i3 the kinematic wave speed which can bte evaluatad using the
following:

c = KV (9

in which X 13 a cross—sectional shape factor, 7/6 € K< 5/3. FHence, by
substituting Eq. (9) into Eq. (8), the exprassion for 3y/3x becomes:

dy/3x = =3y/3t/ (V) (10)

Returning now to Eq. (2), the following is obtained by substituting Eags.
(7) and (10) into Eq. (2):

1y () 3
2
e 8e L _[T-33px + (1-1/R) 3L - 30/¢] (11)
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let the time derivatives be represented by the following expressions:
dy/3c = M yp/'r (12)
v/t = M VP/T (13)

in which y. 13 the peak depth, V_ is the peak velocity, and M is a multiplier
which adjusts the straight line approximation for the rising limb of the
hydrograph to that maximum slope associated with the rising limb of a hydro—
graph having a gamma distribution. 4An expression for M is developed by dif-
ferentiating the gamma function, evaluating this expression at t = 2T/3 and
then forming a ratio of the evaluated expression to the straight line approxi-
mation. (See Appendix B for the derivation of M). The resulting expression
for M 1is:

M= a/2 (2/1% &3 (14)
where: a = 1/(T3/Tr -1 (15)
in which T_ is the time (hr.) from beginning of rise to the center of gravity
of the hydgograph, and '1'r is the time (hr.) from the beginning of rise to the
peak of the hydrograph. The minimum value for M is one when the rising limb
13 a straight line; and its maximum value of about 2.5 occurs when T /T is

1.09 and t = 2T./3. Thus, 1 < M< 2.5 represents the range for the multiplier
parameter (M).

It i3 more convenient if the time of rise (Tr) is expressed in hrs.;
therefore, Eqs. (12-13) become:

dy/3t = M yp/(3600 Tr) . (16)
IV/at = M Vp/(3600 rr) (17
in which Tt is the time of rise (hr.) of the hydrograph.

The velocity (V) in the preceding equations is assumed to be the velocity
occurring when t = ZTr/3, i.e.,

V=2V,/3 ' (18)
since the velocity at the beginning of rise is assumed negligible compared

to V.. Upon substituting Eqs. (16-18) into Eq. (1l1) and simplifying, the
following is obtained:

(D (2) (3
s 0.000617 ¥y 0.00000863 ¥ v 2y,
sl T 35 xv. T T3 [8 + (1-UR) =5~ - 1] (19
o T O P T o
1600 T_ V_ _
where: 8 = —e— AB/Ax (20)



REPRESENTATION OF HYDRAULIC PARAMETERS

In order to evaluate the terms in Eq. (19) befors routing an inflow
hydrograph, it 1s necessary to exprsss the parametars (y,., Vp, X, D, B) in
terms of parameters which ars kaown a priori. To accompiish this, as well
as account for the effect of cross-sectional shape, the channel geometry i3
approximated as: :

B=ky® (21)
e =L

A= _z—m-l (22)

D = A/B = y/(mrl) (23)

in which k and m are fitted parameters for the observed variation of B with
v. Scaling is accomplished via k, and m accounts for the shape. Rectangular
(wide channel), parabolic, and triangular shaped channels have a values of O,
0.5, and 1.0, respectively. A value of m > | rapresents an expanding-—shape
section in which the width (B) increases at a nonlinear rate with depth (y).
This shape is appropriata for many natural cross sections composed of a
relatively narrow in-bank channel and a rather wide over—-bank (floodplain)-
section.

Using the Manning equatiom, the unit-width peak discharge (qp) is given
by:

- 172 .5/3
qp 1.49/n So Dp

Then, substituting Eq. (23) into Eq. (24) and solving for To» the following is
obtained:

(24)

Yy = (qp/a)o‘6 (25)
ahere: a2 = 1.69 52/%/(a (@)’ (26)
Also, the unit-width discharge (qp) can be expressed as Op/B or
9 5/ (3m+S)
1, = a (g (27)

in which Qp is the peak discharge of the inflow hydrograph.

Using the Manniag equation, the peak velocity (Vp) can be exprassed as:
2 9
l/b D-/B

o P

VD = 1,49/n S (23)
Substituting peak values for V and D (using Eq. (23) for the latter) rasults
in the following:

]2/3

1.2 1/2
vp 1.49/na S, [yp/(nri-l) (29)



Now, substituting Eq. (25) into Eq. (29) yields an expression for V_:

p
0.6 0.4

V = 30
o (mrl) a qp (30)

The ratio (Vp/yp) can be obtained from Eq. (25S) and (30). Thus,

1.2, 0.2

= ¢ 31
Vp/yp (mrl) a /qp (31)

The cross—sectional factor (K) in Eq. (9) is given by the following:
K = 5/3 - 2/3 dB/dy A/B? (32)

Upon substituting Eqs. (21-22) into Eq. (32) and simplifying, the following is
obtained:

K= (3m+5)/[3(mrl)] , (33)

The ratio [2 yp/(3D)] in Eq. (19) may be obtained as follows:

2 yp
3(2 Yp/3)/(m+l)

2y /(3D) = = mrl (34)

Then, the term in brackets of Eq. (19) can be evaluated using Egs. (33),
and (34). Thus,

8 + (1-1/K) 2 Yp/(3D) -1 =8 - (m3)/(3m+s5) ) (35) .

The ratio (Vp/B) is obtained using Eqs. (21) and (30). Thus,

0.6m-0.4]
P

Then, using Eq. (36), the nonprismatic term (8), Eq. (20), can be expressed as
follows:

VP/B~= I.Sm(m+l)ao'6(M+l)/(k q (36)

1600 T_ 1.5%(m+1) a0-6(m+1)

B = 0.6m - 0.4
q

AB/Ax (37)
Mk

in which AB/Ax is the average variation of the width (B) along the routing
reach (Ax); this is the nonprismatic characteristic of the routing reach.

DIFFUSION ROUTING MODELS

Diffusion-type routing models are based on the following approximation
for S:

S = So - dy/3x (38)

Therefore, only the inertial effect representad by the third (3) term in
Eqs. (2), (11), and (19) is omitted. The error due to the omission of this
term is denoted as E_, expressed as a decimal fraction. The following
inequality expresses the relationship that must exist if the omitted term
should not cause a relative error in the conservation of momentum equation
greater than Er:



0.00000863 M V
T_S
T o

2 > 2 (8 + (1-1/K)2 7 /(3D) = 1] (39)
Using Eqs. (30) and (35), Eq. (39) can be expressed as follows:

0.000011 ¥ q ° 4

s0 0.7 O 6

E > |8 = (a+3)/(3m+S)| (40)

T T

Replacing Er with E/100, in which E is in perceant, Eq. (40) can be rearranged
as follows:

T g0-7 0.6
2 57— > 0.0011/E (41)
M q
]
whera: 9' = [8 - (w+3)/(3m+s5)| (42)

In Eq. (42), E is a quantitative index ralated to the maximum error (percent)
that is tolerated when the inequality is satisifed. When the channel is pris-
matic (AB/Ax = 0) with rectangular cross—section (m=0) and assuming M = 2. 5
Eq. (41) becomes:

T SO 7 O 6

%
qﬂ
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> 0.0017/E (43)

Kinematic-type routing models are based on the assumption of a single-
valued depth-discharge relation, i.e.,

3A/3Q = dA/dQ = L/c (44)

Eq. (44) implies that the friction slope (S) is constant and equal to the
bottom slope, i.a.,

- A
S So (45)

ot S/S = 1 (46)

Therefore, kinematic models omit the second (2) and third (3) terms of
Eqs. (2), (11), and (19). The error due to the omission of these terms is
denoted as E, exprassed as a decimal fraction. The following inequality
exprasses the rslationship that must exist if the omitted terms should not
cause a ralative error of conservation of momentum greatar tham Er:

0.000417 M 7, 0.00000863 4 V

D - -
Bl‘.’ > -—_i,' T + ,-rL 3 8 + (t 1/R) 2 79/(31)) 1] (47)
r o D r o




Substituting Eqs. (30), (31), (33), (35), and (42) into Eq. (47), the
following is obtained:

0.000777 M qg'z al*? (@1?  0.000011 ¥ qg'“ x

+ —— (48)
T_ 516 (3m+5) T 07 ;0.6
T o T o]

Er >

Replacing E. with E/100, in which E is in percent, Eg. (48) can be rearranged
in the following form:

0.0777 M qg'z al*2 o (141)

E> (49)
T ol6
r o
where: & = (mr1)2/(3mk5) (50)
I = 0.014 sg'g qg°2 31/ nl-dy (51)

The parameter (I) acounts for the term (3) in Eq. (47). It represents less
than about 17% of term (2) for flows with Froude numbers (F) less than 0.5 and
only represents 4% of term (2) when the Froude aumber is 0.25. The parameter
(I) can also be expressed in terms of the Froude number (F), i.a., -

I =0.22 F2 ¢'/9,

Rearranging Eq. (49), the following criterion is obtained for kinematic
models: .
81'6

r o
0.2 1.2 > 0.078/E (52)
M (1+1) 9 qp n

If the inequality in Eq. (52) is satisfied, the maximum error that will
be incurred using a kinematic model is E (percent). If the channel is pris-
matic, rectangular, M is assumed to be 2.5, and the Froude number is about 0.5
such that I may be approximated as 0.15, Eq. (52) reduces to the following:

gle6
orz °1 > > 0.045/E (53)
qp. n L]

COMPARISON WITH CRITERIA OF PONCE AND SIMONS

Ponce and Simons (1977) developed an analytical solution to a linearized
version of the unsteady flow equations, Egs. (1) and (3), for a sinusoidal
shaped wave propagating in a wide channel. Ponce et al. (1978) used this
information to define the limits of applicability of the kinematic and
diffusion type models.

Kinematic Criterion. In the case of kinematiec models, they presentad the
following criterion for routing errors at the 5% level:

TD S v

D° 25 171 (54)
Q




in which Tp is the duration (sec.) of the inflow hydrograph. Using Eqs. (23),
and (30) and the approximation that Tp = (2)(3600)T., Eq. (54) may be
rewritten in the following equivalent form:

T s1.6

T [e)
53 1.2 > 0014 (55)
q o 8

P

For a wide channel (m = 0), with M taken to be about 1.7 for a sinusoidal
shaped hydrograph, I = 0.15, and E = 5, Eq. (52) becomes:

r sl
5.3 1.2 > 0.006 (56)
Qp o

The left-hand-side of Eq. (56) is identical with that of Ea. (55), although
the right-hand-side of Eg. (55) is about two times that of Eq. (56).

Diffusion Criterion. In the case of diffusion models, Ponce et al. (1978)
presentad the following criteriom:

Ty S, /g/Do > 30 (57

Substituting Zas. (23) and (31) into Egq. (57) allows it to be rewritten in.:he
following equivalent form:

Tr Si.ls )
.000
(q n)0‘3 > 0.0003 . (58)
o]
Eq. (58) can be rewritten in the following form:
Tr 52.7 n0.6
A > 0.0003 £ (59)
qp
whers f varies from about 0.5 to l.5 depending onm a typical range of values
=0.5
for So and ne.

Zq. (41), with E = 5, ¥ = 1.7, I = 0.15, and o = 0, becomes:
T S0.7 u0.6

T O

]

Eqs. (59) and (60) are identical, although the right-hand-side of 2q. (59) can
be from one-half to about two times that of Ea. (60). Thus, it is considered
that this approach is in general agreement with that of Ponce et al. (1978)
while being able to account for channel shape, more realistic shaped
hydrographs than the sinusoidal approximation, and non=prismatic channel
geometTry.




